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Effectiveness of ranked ¢ scores for identification of signaling
genes: a simulation study

Harry L. Hurd
August 13, 2002

Abstract

Since some of the methods for identifying signaling genes in microarray experiments
are hiearchical networks of often simple methods, it seems natural to use simulation
to understand how well these methods perform under idealized circumstances. In this
study we assume that expression levels for signaling genes are distributed N(u,1), 4 > 0
and are distributed N(0,1) for the non-signaling ones. Signaling genes are identified
simply by taking the top N ranked ¢ scores. Under this set-up we evaluate the probability
that the top 10 scores will correctly identify at least M good genes as a function of the
gene signaling level y, the number of samples from the control and treatment populations
and the number of genes that carry the signal.

In spite of these simplicity of the model we think some insight is gained about the
relationships between the sample size and the signaling level at which some specified per-
formance is obtained. The conclusion, under the assumption of equal signal strengths,
is that there is considerable payoff for “genefinding” in the first few doublings of sample
size, say from 2 to 4 and perhaps to 8. The reduction of signal level required to give
specified “genefinding” performance continues and appears to agree with the anticipated
asymptotic reduction by v/2 for each doubling.

The purpose of computing is insight. R.W. Hamming

1 Introduction

Our simplistic view of the microarray-based genefinding process is the following. Genetic
material from control and treatment experiments is applied to microarrays and the expres-
sion levels are read (we do not need to discuss the several technologies for doing this, al-
though this simulation was motivated by thinking about the Affymetrix technology). Based
on statistical tests comparing treatment and control data, we wish to identify candidate
genes that signal the treatment. Of course some candidates may actually be biologically
unrelated to the treatment due to randomness in the statistical decision process (false pos-
itives). Hence we are motivated to measure the performance of procedures for forming lists
of candidate genes.

Since we do not know the real underlying distributions of expression level, we make the
simplifying assumption they are normal and that the variations are independent from gene



to gene and that different samples are independent. We leave the interpretation “sample”
to the reader, since it could be considered a replication for a single subject or possibly a
single experiment for one of several subjects. Only the the mean levels of the signaling genes
change during treatment. The following questions most certainly arise in any experimental
program whose goal is to discover genes that signal a treatment : how many genes signal
the treatment and how strong is the signaling? Without any biological experience we must
be prepared to think that, depending on the treatment conditions, the number of signaling
genes can be many or few and the signaling strengths can be strong or weak, or a mixture
thereof.

To illustrate this point, Figure 1 presents simulated |¢| scores for (treatment - control)
expression level differences of 100 genes in which there are 10 signaling genes randomly
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Figure 1: Simulated [t| scores for 2 paired samples of control and treat-
ment where control gene levels are N(0,1) and signaling treatment genes
are N(u,1). The 10 signaling p values are shown in Figure 2. Signaling
genes shown in red. Only 2 signaling genes appear in the top 10 values of
2.

placed within the 100 and having p’s as shown in Figure 2. We used the absolute value |[¢|
here for ease in plotting. For Figure 1 there are 2 samples (replications) per gene for both
control and treatment. Gene expression levels under the control condition are N(0,1) as
they are also for non-signaling genes under the treatment condition. Expression levels are
N(u,1) for the signaling genes under the treatment condition. Only 2 of the 10 signaling
genes appear in the top 10 values of |¢|.
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Figure 2: The 10 signaling y values for the simulation experiment of Figure
1.

But as shown in Figure 3, by taking 8 paired samples of control and treatment and
computing |t| scores, more of the signaling genes are perceptible; now 6 signaling genes
appear in the top 10.

This has demonstrated the main idea. In the general case, since we do not know a-priori
where we are operating in u-space, a reasonable strategy is to begin with a small number of
samples and see if any (or how many) very significant ¢-scores are found. If there are many,
and if enough of these make biological sense, then perhaps we are done. But if only a few
are significant, taking adjustments for multiple hypotheses into account, then more samples
would be called for. Taking more samples lets us perceive smaller values of y in the noise.
A major question is how much further down in u can we see by an increase in sample size?

In this first simulation, which is motivated by Figures 1-3, we try to get an appreciation
of the relationship between the correct identification of signaling genes and (1) the number
of signaling genes, (2) the strength of the signaling genes and (3) the number of samples in
the control and treatment groups. In all cases we assume the u’s for the signaling genes are
all the same, which is yet a simpler case than that of Figure 1. We declare the signaling
genes to be those having the highest 10 ¢ scores. Choosing the top 10 is meant to represent
the case in which only a few genes may be expected to signal the treatment condition. Other
simulations are in progress for which many more genes are thought to signal the treatment
condition. Also, in the remainder we use the highest ¢ values rather than |¢|, as in the
previous paragraphs, because we have set u > 0 for the signaling genes.

2 The simulation

We provide estimates of two “genefinding” performance measures for the simple method of
choosing N poose genes from a large total Ng by taking those genes giving the top N poose
values of ¢ scores computed (for each gene) from microarray expression level data. In this
case it is assumed the control and treatment samples are paired so the ¢ scores are based
on the sample mean and variance of the differences between control and treatment. This



|t| scores for NSAMP=8
T T T

0 . . . . . X e X1 .
0 10 20 30 40 50 60 70 80 90 100

Figure 3: Simulated |¢| scores for 8 paired samples of control and treat-
ment where control gene levels are N(0,1) and signaling treatment genes
are N(p,1). The 10 signaling p values are shown in Figure 2. Signaling
genes shown in red. Now 6 signaling genes appear in the top 10 values of |¢|.

assumption permits each sample to have a possibly random shift in mean that is common
to the control and treatment.
The performance measures are:

1. Expected number of signaling genes found.
2. Probability that at least K signaling genes will be found.

Both of these quantities can be estimated from the empirical distribution of N., a random
variable describing the number of correctly identified signaling genes found in an experiment.

The gene signaling model. All gene expression levels for the control group are made
i.i.d normal with mean 0 and variance 1. We assume that only Ng,.q genes carry the signal
for the treatment and they are randomly chosen from all the genes. All gene expression
levels for the treatment group are also independent and normal with variance 1, and all
except the Ny,oq signaling genes have mean 0 also. All the Ny,o4 signaling genes have mean
> 0, a parameter that may be interpreted as signal level.

In way of criticism, the normal constant variance model is much too simplistic although
the results here would be unchanged if the genes had different variances provided the vari-
ances of control and treatment for each fixed gene were identical. That the signaling genes
all have the same signal level 4 > 0 is also much too simplistic. It may be more realistic
for the u’s for the signaling genes to be governed by a probability distribution, or even
deterministically controlled as in Figure 2. The use of the ¢, which depends on normality,



can also be replaced with a non-parametric rank test at come cost in efficiency. But the
main objective is to illustrate how well this process works in an idealized case, and to see
the change in performance as a function of parameter values. So for now, these criticisms
just motivate future improvements.

Gene identification. For each gene, the ¢ statistic will be based on the sample mean of
differences between control and treatment, and on the corresponding sample variance of the
differences. This is a result of the assumption that the control-treatment samples are paired.
True variances can also be dependent on the sample if we assume the shift in mean scales
with the sigma. Since taking logs of the data removes scale-only effects of this sort, one can
interpret the simulated variates to be logged data of this type.

Parameter definitions and values. Some of these were already defined but we list all
here.

Symbol Values Description

Ng 12,000 Number of genes

Nyood 5,10,20,40 Number of signaling genes

Nepoose 10 Number of genes chosen by rank method

Noamp  2,4,8,16,32  Sample size of both control and treatment groups
Nipiais 1000 Number of trials in the monte-carlo simulation

I as needed  Signal level of the signaling genes

N, Number of correctly identified genes

Quantities computed. For each setting of the parameters Ngooq, Nsamp and p, we com-
pute the empirical distribution of

N, = No. correctly identified genes.

Denote .
b= #[Ne = J]
J Ntrials

From these empirical distributions we plot the quantities

) .7 = 0,1,... aNch,oose-

1. the mean of the empirical distribution, m. = }_; jp;;
2. P[N, > k] = Y54 b, for k=1,5,9

as a function of log2(u) for each of the conditions Nyooq = 5,10,20,40. This gives a total
of 16 plots. We regret the large number of plots, but include them so because they may
permit further analysis as in the next paragraph.



Discussion of the plots and formation of Table 1. The plots are presented in Figures
5 through 12. First note that the bottom plot of Figure 6 (P[N, > 9] = .5) is completely
void because the event N. > 9 is impossible if Nyyoq = 5. From these figures we can
estimate the effect of sample size for a fixed number of good genes (Nyoo4), Or we can see
the performance as a function of Ny, for fixed sample size. Of course in real experiments
we (the experimenter) have control of sample size but the values of Ny,o4 are unknown to
us. Simulation may help us parametrically study the effect of Nyo.q on the outcomes. To
illustrate the use of these plots, we will investigate the effect of sample size.

For this simulation we have chosen the parameters Ngooq = 5,10,20,40 and Nsgmp =
2,4,8,16,32 to be finite sequences that increase by a factor of two. This permits us to
estimate the change in signal level y required, as a function of doubling sample size Ngmyp,
to meet some performance specification. For example, in the top of Figure 9, let us examine
the changes in p corresponding to the increasing of Nygmp from 4 to 8. We denote fiy, 5
as the empirical solution to m(u) = 5. Thus fi, 5 moves from about log2(u) = 2.6 to
log2(p) = 1, or a factor of 216 = 3.03. Then to increase Ngamp from 8 to 16 decreases the
required log2(u) by 1, or a factor of 2 (table 1 gives a factor of 1.8). Note that the log2(u)
required for Ngqp,p = 2 is not available on this scale. We can also determine the ratio of
1’s required to maintain the probabilities P[N, > k] = > j>kPj = Po where we use Py = .5.
Table 1 results from the application of this procedure to all of the figures.

Discussion of Table 1. Note first that the top part of Table 1 has many asterisks, each
of which indicates that the quantity could not be determined from the computed curves.
In some cases where p values were not initially chosen well, additional simulations were
done to supply the needed parameter values. However, the many asterisks in the section
labeled Ngooq = 5 occur because N, > 9 is impossible if Ny,0q = 5 and achieving m,. = 5 or
P[N, > 5] = .5 is not to be expected for finite x.

The main observation to be made from the table is that for all of the performance
measures used, the sample size doubling of 2 to 4 has a much larger effect on the decrease
in discernable signal level than does the one from 4 to 8 and especially the latter doublings,
say from 16 to 32. Here we take discernable signal level as the value of y that gives some
specified level of performance. Note the p ratios for the 16 to 32 doubling are all near
1.5 whereas we anticipate a diminishing of /2 in the limit as the sample size tends to
infinity. This asymptotic value of v/2 would occur, for example, whenever the sampling
distributions for m. and p; have means that are constant with respect to sample size and
are symmetrically distributed about those means. Since we can expect the estimators i,
and p; to be asymptotically normal, the preceding condition would hold asymptotically.
The v/2 dependence comes simply from the diminishing of sample variance due to doubling
sample size.

To be a little more explicit, suppose the sample size N is sufficiently large so that
mM(2FN) is normal (k > 1) with mean mq and variance o2/2¥. Denote z, as the 100 x pth



i ratio for i ratio for 1 ratio for u ratio for

A Nggmp | Me =5 P[N.>1]=.5 P[N.>5]=.5 P[N.>9]=.5
‘ Ngood =5

2to 4 */* */4.94 */* */*

it08 | */* 4.9/1.71=2.86 ¥ ¥

8to 16 | */* 1.71/0.97=1.76 * /% *[*

16 to 32 | */* .97/.61=1.59 */* */*

Ngooa = 10

2to4 */7.38 45/3.65=12.3 */8.03 */25.20

4 to 8 7.38/2.24=3.29 | 3.65/1.38=2.64 8.03/2.38 = 3.37 | 25.20/4.71=5.35

8 to 16 2.24/1.22=1.83 | 1.38/0.78=1.77 2.38/1.26 = 1.89 | 4.71/2.17=2.17

16 to 32 | 1.22/0.78=1.56 | 0.78/0.51=1.53 1.26/0.81 = 1.55 | 2.17/1.30=1.67
\ Nyooa = 20

2to 4 240/5.18=46.3 | 39.42/2.75=14.3 | 200/5.58=35.8 */13.90

4 to 8 5.18/1.75=2.96 | 2.75/1.09=2.52 5.58/1.83=3.05 13.90/3.05=4.56

8 to 16 1.75/0.97=1.80 | 1.09/0.64=1.70 1.83/1.01=1.81 3.05/1.49=2.05

16 to 32 | 0.97/0.62=1.56 | 0.64/.41=1.56 1.01/0.64=1.58 1.49/0.91=1.64
\ Nyooa = 40

2to4 120/3.87=31.0 | 20.77/2.06=10.08 | 100/4.17=24.0 */10.04

4 to 8 3.87/1.42=2.73 | 2.06/0.87=2.37 4.17/1.49=2.80 10.04/2.47=4.21

8 to 16 1.42/0.79=1.80 | 0.87/0.51=1.71 1.49/0.83=1.80 | 2.47/1.23=2.01

16 to 32 | 0.79/0.51=1.55 | 0.51/.33=1.55 0.83/0.53=1.57 | 1.23/0.75=1.64

Table 1: Ratios of signaling level u required to achieve mi,. = Zj Jjpj =5,
and P[N, > k] = Y5 bk = .5, for k = 1,5,9. An asterisk indicates that
the quantity could not be determined from the computed curves. In some
cases where p values were not initially chosen well, additional simulations
were done for needed parameter values. However, the many asterisks in the
section labeled Ngy,q = 5 occur because achieving m, = 5 or P[N, > 5] = .5
is not to be expected for finite p.




percentile of a standard normal. Then

mc(N_) —my

Pr[
o

>zp]:1—p

> 2p

he(2FN) —
prlu —1-»p.

o/V2k

Thus the change in the 100 x pth percentile threshold for increasing from N to 2N is

mo + 2,0 — mg — 2,0/V2 = z0(1 — 1/V2)
and for increasing from 2N to 4N it is
mo + 20/ V2 —mg — 2,0/2 = zpo(1 —1/V2) /V2.

This produces a ratio of changes in the 100 x pth percentiles due to doubling sample sizes
of 1/v/2.

Since the quantities of interest, . and p; both are with respect to the random variable
N, (no. good genes identified), we show empirical distributions of N, from the simulations
in the four plots of Figure 4. These plots show that the empirical distributions of N, are far
from symmetric (and far from Gaussian) for the cases N; = 4,8,16 but looks much more
Gaussian for N, = 32.
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Figure 4: Empirical distributions of N, for u = .8, Nyooq = 20 and N, =
4,8,16,32.



We remind that these results are based on equal signal strengths, but under this assump-
tion, the simulation implies that there is considerable payoff in the reduction of discernable
signal level in going from 2 to 4 and perhaps to 8 experiments. And although expensive to
go from 2 to 4 or to 8, the expense is much less than from 16 to 32.

Confidence limits The 95% confidence interval for estimating a probability Py = .5
with a sample of 1000 is [.469,.531] or roughly .5 + .03. This may be transformed back to
a statement about p using the experimentally determined curves (in the 16 Figures).

The confidence interval for . is estimated using the sample variances 62 = > =
fnC)Qﬁj which were found to be at most 4.5 at u’s that gave ., = 5. Then using asymptotic

normality of
1 Nirials

c,n

The =Y jbj =
J

where the number of correctly found in each trial, N, , are considered independent random
variables, the estimate of standard error for m,. is v/4.5 x 10=% = .067. From the normality
assumption, the 95% confidence interval around 7. = 5 is within the interval 7. £ .13.

Ntrials n=1

Comments, Suggestions for improvement. The purpose of this exercise was to see if
simulation could help our understanding about the interplay of the parameters Nsamp, Ngood
and Ncpoose in the simple genefinding algorithm of choosing the top Nepoose t scores. The
author welcomes comments, suggestions and new questions that arise from this small effort.
The following items of improvement seem clearly interesting.

1. Evaluate the effect of other signal strength distributions (here it is constant, i.e.,
uniform).

2. Base the random expression levels on empirical distributions from observed data or
on distributions whose parameters are determined by observed data.

3. Use simulation to help understand how the elements of the list change as sample size
is increased. For example, given a realization from Ngqmp = 2, what should we expect
from our gene list, ¢ scores, etc, when we go to Nygmp = 47

References
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Figure 5: Results of genefinding simulation, Ncpoese = 10, Ngoog = 5, Nipjars = 1000. Genes
chosen from top 10 t-scores based on paired observations.
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Figure 6: Results of genefinding simulation, Ncpoese = 10, Ngoog = 5, Nirjars = 1000. Genes

chosen from top 10 t-scores based on paired observations. Note N. > 9 is impossible for
Nyood = 5.
goo
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Figure 7: Results of genefinding simulation, Ncpoose = 10, Nggoq = 10
Genes chosen from top 10 t-scores based on paired observations.

Niriars = 1000.
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Figure 8: Results of genefinding simulation, Ncpoese = 10, Ngooq
Genes chosen from top 10 t-scores based on paired observations.

= 10, Nyiass = 1000.
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Figure 9: Results of genefinding simulation, Necpoose = 10, Ngooq = 20,
Genes chosen from top 10 t-scores based on paired observations.

Niriars = 1000.
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Figure 10: Results of genefinding simulation, Ncpoese = 10, Ngooq
Genes chosen from top 10 t-scores based on paired observations.

= 20, Nyiats = 1000.
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(a) Average number of identified good genes.
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Figure 11: Results of genefinding simulation, Ncpoose = 10, Ngooq
top 10 t-scores based on paired observations.
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(b) Probability of identifying at least 1 good gene.
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Figure 12: Results of genefinding simulation, Ncpoese = 10, Ngooq
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(b) Probability of identifying at least 9 good genes.
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Genes chosen from top 10 t-scores based on paired observations.

= 40, Nyiais = 1000.



